Bayesian Methods for Quality Tolerance Limit (QTL) Monitoring

Author:

Poythress J. C.1,Lee Jin Hyung2,Takeda Kentaro1ORCID,Liu Jun1

Affiliation:

1. Data Science Astellas Pharma Global Development, Inc Northbrook Illinois USA

2. Department of Statistics George Mason University Fairfax Virginia USA

Abstract

ABSTRACTIn alignment with the ICH guideline for Good Clinical Practice [ICH E6(R2)], quality tolerance limit (QTL) monitoring has become a standard component of risk‐based monitoring of clinical trials by sponsor companies. Parameters that are candidates for QTL monitoring are critical to participant safety and quality of trial results. Breaching the QTL of a given parameter could indicate systematic issues with the trial that could impact participant safety or compromise the reliability of trial results. Methods for QTL monitoring should detect potential QTL breaches as early as possible while limiting the rate of false alarms. Early detection allows for the implementation of remedial actions that can prevent a QTL breach at the end of the trial. We demonstrate that statistically based methods that account for the expected value and variability of the data generating process outperform simple methods based on fixed thresholds with respect to important operating characteristics. We also propose a Bayesian method for QTL monitoring and an extension that allows for the incorporation of partial information, demonstrating its potential to outperform frequentist methods originating from the statistical process control literature.

Publisher

Wiley

Reference14 articles.

1. International Council for Harmonisation (ICH) “ICH Harmonised Guideline: Integrated Addendum to ICH E6(R1): Guideline for Good Clinical Practice E6(R2) ” 2016 https://database.ich.org/sites/default/files/E6_R2_Addendum.pdf.

2. International Council for Harmonisation (ICH) “ICH Harmonised Guideline: Good Clinical Practice (GCP) E6(R3) ” 2023 https://database.ich.org/sites/default/files/ICH_E6.

3. Quality Tolerance Limits: Framework for Successful Implementation in Clinical Development

4. Historical Benchmarks for Quality Tolerance Limits Parameters in Clinical Trials

5. S. A.Gilbert Implementing Quality Tolerance Limits at a Large Pharmaceutical Company2020 PharmaSUG 2020 Paper SA‐284.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3