Making the most of AI and machine learning in organizations and strategy research: Supervised machine learning, causal inference, and matching models

Author:

Rathje Jason1,Katila Riitta2,Reineke Philipp2

Affiliation:

1. Department of Defense Arlington Virginia USA

2. Stanford University Stanford California USA

Abstract

AbstractResearch SummaryWe spotlight the use of machine learning in two‐stage matching models to deal with sample selection bias. Recent advances in machine learning have unlocked new empirical possibilities for inductive theorizing. In contrast, the opportunities to use machine learning in regression studies involving large‐scale data with many covariates and a causal claim are still less well understood. Our core contribution is to guide researchers in the use of machine learning approaches to choosing matching variables for enhanced causal inference in propensity score matching models. We use an analysis of real‐world technology invention data of public–private relationships to demonstrate the method and find that machine learning can provide an alternative approach to ad hoc matching. However, as with any method, it is also important to understand its limitations.Managerial SummaryThis article explores the use of machine learning to enhance decision‐making, particularly in addressing sample selection bias in large‐scale datasets. The rapid development of AI and machine learning offers new, powerful tools especially for digital ecosystems where complex data and causal relationships are complex to analyze. We offer managers and stakeholders insight into the effective integration of machine learning for selecting critical variables in propensity score matching models. Through a detailed examination of real‐world data on technology inventions within public–private relationships, we demonstrate the effectiveness of machine learning as a robust alternative to traditional matching methods.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3