Analyzing paramagnetic NMR data on target DNA search by proteins using a discrete‐state kinetic model for translocation

Author:

Yu Binhan1,Iwahara Junji1ORCID

Affiliation:

1. Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology & Molecular Biophysics University of Texas Medical Branch Galveston Texas USA

Abstract

AbstractBefore reaching their targets, sequence‐specific DNA‐binding proteins nonspecifically bind to DNA through electrostatic interactions and stochastically change their locations on DNA. Investigations into the dynamics of DNA‐scanning by proteins are nontrivial due to the simultaneous presence of multiple translocation mechanisms and many sites for the protein to nonspecifically bind to DNA. Nuclear magnetic resonance (NMR) spectroscopy can provide information about the target DNA search processes at an atomic level. Paramagnetic relaxation enhancement (PRE) is particularly useful to study how the proteins scan DNA in the search process. Previously, relatively simple two‐state or three‐state exchange models were used to explain PRE data reflecting the target search process. In this work, using more realistic discrete‐state stochastic kinetics models embedded into an NMR master equation, we analyzed the PRE data for the HoxD9 homeodomain interacting with DNA. The kinetic models that incorporate sliding, dissociation, association, and intersegment transfer can reproduce the PRE profiles observed at some different ionic strengths. The analysis confirms the previous interpretation of the PRE data and shows that the protein's probability distribution among nonspecific sites is nonuniform during the target DNA search process.

Funder

National Institutes of Health

Welch Foundation

Publisher

Wiley

Subject

Organic Chemistry,Biomaterials,Biochemistry,General Medicine,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3