Nonlinear lattices from the physics of ecosystems: The Lefever–Lejeune nonlinear lattice in ℤ2$$ {\mathrm{\mathbb{Z}}}^2 $$

Author:

Karachalios Nikos I.1ORCID,Krypotos Antonis1,Kyriazopoulos Paris1

Affiliation:

1. Department of Mathematics University of the Thessaly Lamia Greece

Abstract

We argue that the spatial discretization of the strongly nonlinear Lefever–Lejeune partial differential equation defines a nonlinear lattice that is physically relevant in the context of the nonlinear physics of ecosystems, modelling the dynamics of vegetation densities in dry lands. We study the system in the lattice , which is especially relevant because of its natural dimension for the emergence of pattern formation. Theoretical results identify parametric regimes for the system that distinguish between extinction and potential convergence to nontrivial states. Importantly, we analytically identify conditions for Turing instability, detecting thresholds on the discretization parameter for the manifestation of this mechanism. Numerical simulations reveal the sharpness of the analytical conditions for instability and illustrate the rich potential for pattern formation even in the strongly discrete regime, emphasizing the importance of the interplay between higher dimensionality and discreteness.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3