Cryptic biodiversity: A portfolio‐approach to coral reef fish surveys

Author:

Bessey Cindy123ORCID,Depczynski Martial34,Goetze Jordan S.56,Moore Glenn78,Fulton Christopher J.34,Snell Mark1,Parsons Sylvia K.1,Berry Oliver2,Wilson Shaun348

Affiliation:

1. Commonwealth Scientific and Industrial Research Organisation Indian Oceans Marine Research Centre, Oceans and Atmosphere Crawley Western Australia Australia

2. Commonwealth Scientific and Industrial Research Organization Indian Oceans Marine Research Centre, Environomics Future Science Platform Crawley Western Australia Australia

3. University of Western Australia, UWA Oceans Institute Crawley Western Australia Australia

4. Australian Institute of Marine Science, Indian Ocean Marine Research Centre Crawley Western Australia Australia

5. Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science Marine Science Program Kensington Western Australia Australia

6. School of Molecular and Life Sciences, Curtin University Bentley Western Australia Australia

7. Collections and Research, Western Australian Museum Welshpool Western Australia Australia

8. School of Biological Sciences, University of Western Australia Nedlands Western Australia Australia

Abstract

AbstractBiodiversity conservation and management requires surveillance that captures the full spectrum of taxa. Here, we showcase the potential for a portfolio of visual, extractive, and molecular methods for detecting previously hidden components of tropical fish biodiversity in an economically and culturally valuable marine site that spans a tropical‐temperate ecotone—the Ningaloo Coast World Heritage Area. With scale and practicality in mind, we demonstrate how environmental DNA (eDNA) methods deployed in a stratified sampling design can yield a more comprehensive monitoring program for species presence than current alternatives (e.g., extractive sampling via anesthetic). eDNA from filtered water samples detected up to six times as many cryptobenthic fish species per site than samples collected with anesthetic, indicating it is a potentially powerful tool for assessing biodiversity of tropical fishes. However, there were also species that were only found when using anesthetic and the contribution of cryptobenthic species to overall diversity of the fish assemblage was unexpectedly low, suggesting not all cryptobenthic fish species have been detected with eDNA. There were also distinct differences in cryptobenthic assemblages both among sites and sample depths (2–3 m) when using eDNA from filtered water, suggesting this technique may be able to identify fine scale spatial differences in cryptobenthic fish assemblage. eDNA collected from water detects the most cryptobenthic species and is therefore an efficient tool for rapidly assessing biodiversity, but extractive techniques may still be required for biological and monitoring studies, and when combined with eDNA sampling provides the most comprehensive assessment of cryptobenthic fishes.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Wiley

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3