The influence of dynamic resources and stable isotope incorporation rates on aquatic consumer trophic position estimation

Author:

Feddern Megan L.12ORCID,Nielsen Jens M.3,Essington Timothy E.2,Holtgrieve Gordon W.2ORCID

Affiliation:

1. University of Alaska Fairbanks, College of Fisheries and Ocean Sciences Juneau Alaska USA

2. School of Aquatic and Fishery Sciences, University of Washington Seattle Washington USA

3. Cooperative Institute for Climate, Ocean, and Ecosystem Studies University of Washington Seattle Washington USA

Abstract

AbstractA key assumption in trophic position (TP) estimation using stable isotope analysis is that consumers are in isotopic equilibrium with their resources. Here, we assess the degree to which time‐varying resource dynamics and isotope incorporation rates of consumers influence consumer TP estimates across multiple trophic levels and aquatic ecosystems. We constructed a first‐order kinetics model to explore consumer stable isotope incorporation rates and modeled the effect on TP calculations using bulk and compound‐specific stable isotope data from previous experimental and observational studies. We found TP estimates of higher trophic level consumers are less accurate than lower trophic level consumers when applying bulk stable isotope analysis (BSIA) and using particulate organic matter as the stable isotope baseline. The accuracy of TP estimates depended on the time‐varying dynamics of the stable isotope baseline. Tertiary consumers had the highest TP estimation error, and this error was not eliminated by sampling tissues with fast incorporation rates (i.e., blood) in the tertiary consumer. Compound‐specific stable isotope analysis (CSIA) of individual amino acids was more accurate in estimating TP for all consumers and ecosystems compared to BSIA. Our analysis confirms that consideration for the dynamic nature of stable isotope ratios is necessary for accurate TP estimates. Finally, we show how first‐order kinetics models can provide a useful framework for integrating prey and consumer incorporation rates in stable isotope studies to improve TP estimates.

Funder

Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington

Washington Sea Grant, University of Washington

Publisher

Wiley

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3