Affiliation:
1. Scripps Institution of Oceanography, University of California San Diego California USA
2. Department of Earth and Environmental Sciences University of Michigan Ann Arbor Michigan USA
3. Earth, Ocean, and Atmospheric Science Department Florida State University Tallahassee Florida USA
4. Department of Oceanography University of Hawai'i at Manoa Honolulu Hawaii USA
Abstract
AbstractThe uptake of 3H‐labeled leucine into proteins, a widely used method for estimating bacterial carbon production (BCP), is suggested to underestimate or overestimate bacterial growth in the open ocean by a factor of 40 uncertainty. Meanwhile, an alternative BCP approach, by the dilution method, has untested concerns about potential overestimation of bacterial growth from dissolved substrates released by filtration. We compared BCPDil and BCPLeu estimates from three cruises across a broad trophic gradient, from offshore oligotrophy to coastal upwelling, in the California Current Ecosystem. Our initial analyses based on midday microscopical estimates of bacterial size and a priori assumptions of conversions relationships revealed a mean two‐fold difference in BCP estimates (BCPDil higher), but no systematic bias between low and high productivity stations. BCPDil and BCPLeu both demonstrated strong relationships with bacteria cell abundance. Reanalysis of results, involving a different cell carbon‐biovolume relationship and informed by forward angle light scatter from flow cytometry as a relative cell size index, demonstrated that BCPDil and BCPLeu are fully compatible, with a 1 : 1 fit for bacteria of 5 fg C cell−1. Based on these results and considering different strengths of the methods, the combined use of 3H‐labeled leucine and dilution techniques provide strong mutually supportive constraints on bacterial biomass and production.
Funder
National Science Foundation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献