Classification of suspended particles in seawater using an in situ polarized light scattering prototype

Author:

Deng Hanbo12,Wang Hongjian1,Guo Zhiming1,Li Jiajin12,Liao Ran13ORCID,Li Hening12,Li Qiang1,Ma Hui3

Affiliation:

1. Shenzhen Key Laboratory of Marine IntelliSensing and Computation, Institute for Ocean Engineering, Shenzhen International Graduate School Tsinghua University Shenzhen China

2. Department of Biomedical Engineering Tsinghua University Beijing China

3. Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen International Graduate School Tsinghua University Shenzhen China

Abstract

AbstractClassification of suspended particles characterizes the composition of seawater, which helps the interpretation of remote sensing data and promotes the researches of the matter exchanges in ocean processes. In this article, an in situ prototype based on polarized light scattering is introduced, and its ability to classify the suspended particles is demonstrated. The experimental results show that the prototype can classify the sediments, microplastics, and phytoplankton in seawater with an accuracy larger than 85%, and further calculate their relative proportion in water. In the summer and winter of 2020, the prototype was deployed three times in Daya Bay and lasted for dozens of hours each time, along with the additional commercial sensors, that is, Environment X Observation (EXO) and Acoustic Doppler Current Profiler (ADCP). The chlorophyll content measured by EXO and the acoustic backscatter intensity measured by ADCP are respectively related to the number of algal cells and sediments in the water, which helps to interpret the data of the prototype. The results of field data show that the prototype can effectively classify phytoplankton and sediment particles in seawater and monitor their temporal variations. Besides, the retrieved information of the suspended particles is consistent with the analysis from the flow dynamics and season variations in Daya Bay. These results indicate the ability of this prototype to classify the suspended particles in seawater, which promises its potential contribution to particulate oceanography in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3