Development and deployment of a long‐term aquatic eddy covariance system

Author:

Coogan Jeff1ORCID,Long Matthew H.1ORCID

Affiliation:

1. Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution Woods Hole Massachusetts USA

Abstract

AbstractThe aquatic eddy covariance (AEC) technique is a versatile tool for understanding benthic fluxes, and calculating primary production, respiration, and net ecosystem metabolism rates of benthic communities. A limitation for researchers has been the length of deployments where the major constraints have primarily been sensor breakage and degradation over time and battery consumption. This paper evaluates the design and deployment of a long‐term eddy covariance system (LECS) that was deployed in a temperate seagrass meadow for 6 months that resulted in reliable data 79% of the time. The system consisted of a fixed bottom lander that measured the AEC and a surface buoy that transmitted real time data and provided solar power. This study found a gradual reduction in sensor response time, likely due to fouling, that reduced the response time from 1 to 22 s and resulted in a normalized root square mean error of 8% when comparing the LECS with a second short‐term AEC system. New spectral analysis techniques allow for these changes in sensor response time to be monitored in real time so the sensor can be replaced or cleaned as needed. This ensures future deployments will be able to collect high‐quality data and allow for long‐term analyses of benthic fluxes using the new technology and analyses of the presented LECS.

Publisher

Wiley

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3