A novel method to sample individual marine snow particles for downstream molecular analyses

Author:

Baumas Chloé M.J.1ORCID,Ababou Fatima‐Ezzahra1ORCID,Garel Marc1ORCID,Bizic Mina2ORCID,Ionescu Danny2,Puzenat Arthur3,Le Moigne Frederic A.C.14ORCID,Grossart Hans‐Peter25,Tamburini Christian1ORCID

Affiliation:

1. Aix‐Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO, UM 110) Marseille France

2. Department of Plankton and Microbial Ecology Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) Stechlin Germany

3. TekCorail, self‐employed Arthur Puzenat Marseille France

4. LEMAR Laboratoire des Sciences de l'Environnement Marin, UMR6539, CNRS, UBO, IFREMER, IRD, Technopôle Brest‐Iroise Plouzané France

5. Institute of Biochemistry and Biology, Potsdam University Potsdam Germany

Abstract

AbstractThe ocean–atmosphere exchange of carbon largely depends on the balance between carbon export of particulate organic carbon (POC) as sinking marine particles, and POC remineralization by attached microbial communities. Despite the vast spectrum of types, sources, ages, shapes, and composition of individual sinking particles, they are usually considered as a bulk together with their associated microbial communities. This limits our mechanistic understanding of the biological carbon pump (BCP) and its feedback on the global carbon cycle. We established a method to sample individual particles while preserving their shape, structure, and nucleic acids by placing a jellified RNA‐fixative at the bottom of drifting sediment traps. Coupling imaging of individual particles with associated 16S rRNA analysis reveals that active bacterial communities are highly heterogenous from one particles origin to another. In contrast to lab‐made particles, we found that complex in situ conditions lead to heterogeneity even within the same particle type. Our new method allows to associate patterns of active prokaryotic and functional diversity to particle features, enabling the detection of potential remineralization niches. This new approach will therefore improve our understanding of the BCP and numerical representation in the context of a rapidly changing ocean.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

EGI Federation

European Regional Development Fund

Publisher

Wiley

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3