Affiliation:
1. Faculty of Agriculture Kagawa University, 2393 Ikenobe Miki Kagawa 761–0795 Japan
2. The United Graduate School of Agricultural Sciences Ehime University, 3‐5‐7 Tarumi Matsuyama Ehime 790–8566 Japan
Abstract
AbstractD‐allulose (Alu), a rare sugar, has proven to be a low‐caloric sugar with potential health benefits. Previous studies have reported that compared with sucrose (Suc), Alu suppresses an increase in gelatinization temperature and retards retrogradation in glutinous rice starch. This study investigates the effect of Alu on gelatinization, water activity, and recrystallization behavior of various starch sources (potato, wheat, tapioca, corn, normal rice, and glutinous rice). MicroDSC results show that compared with D‐glucose (Glc), D‐fructose (Fru), and Suc, Alu does not significantly increase the gelatinization temperatures of the starch suspensions. Alu decreases water activity in the same degree as Fru in wheat, tapioca, corn, normal rice, and glutinous rice starch gels but not potato starch gels. Alu has a stronger suppression effect on recrystallization of normal and glutinous rice compared to potato, wheat, and tapioca after 14‐day storage of 2% starch pastes at 4 °C. These findings suggest that Alu can be a better plasticizer than Suc, Glc, and Fru in most starch sources but retards recrystallization of only normal and glutinous rice starches.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献