Including environmental covariates clarifies the relationship between endangered Atlantic salmon (Salmo salar) abundance and environmental DNA

Author:

Morrison Melissa K.1ORCID,Lacoursière‐Roussel Anaïs12,Wood Zachary T.34ORCID,Trudel Marc25,Gagné Nellie6,LeBlanc Francis26,Samways Kurt1,Kinnison Michael T.3,Pavey Scott A.1

Affiliation:

1. Department of Biological Sciences, Canadian Rivers Institute University of New Brunswick Saint John New Brunswick Canada

2. St. Andrews Biological Station Fisheries and Oceans Canada St. Andrews New Brunswick Canada

3. University of Maine School of Biology and Ecology and Maine Center for Genetics in the Environment Maine Orono USA

4. Colby College Department of Biology Maine Waterville USA

5. Department of Biology, Canadian Rivers Institute University of New Brunswick Fredericton New Brunswick Canada

6. Gulf Fisheries Centre Fisheries and Oceans Canada Moncton New Brunswick Canada

Abstract

AbstractCollecting environmental DNA (eDNA) as a nonlethal sampling approach has been valuable in detecting the presence/absence of many imperiled taxa; however, its application to indicate species abundance poses many challenges. A deeper understanding of eDNA dynamics in aquatic systems is required to better interpret the substantial variability often associated with eDNA samples. Our sampling design took advantage of natural variation in juvenile Atlantic salmon (Salmo salar) distribution and abundance along 9 km of a single river in the Province of New Brunswick (Canada), covering different spatial and temporal scales to address the unknown seasonal impacts of environmental variables on the quantitative relationship between eDNA concentration and species abundance. First, we asked whether accounting for environmental variables strengthened the relationship between eDNA and salmon abundance by sampling eDNA during their spring seaward migration. Second, we asked how environmental variables affected eDNA dynamics during the summer as the parr abundance remained relatively constant. Spring eDNA samples were collected over a 6‐week period (12 times) near a rotary screw trap that captured approximately 18.6% of migrating smolts, whereas summer sampling occurred (i) at three distinct salmon habitats (9 times) and (ii) along the full 9 km (3 times). We modeled eDNA concentration as a product of fish abundance and environmental variables, demonstrating that (1) with inclusion of abundance and environmental covariates, eDNA was highly correlated with spring smolt abundance and (2) the relationships among environmental covariates and eDNA were affected by seasonal variation with relatively constant parr abundance in summer. Our findings underscore that with appropriate study design that accounts for seasonal environmental variation and life history phenology, eDNA salmon population assessments may have the potential to evaluate abundance fluctuations in spring and summer.

Funder

Canada Foundation for Innovation

Canada Research Chairs

Fisheries and Oceans Canada

Natural Sciences and Engineering Research Council of Canada

New Brunswick Innovation Foundation

Publisher

Wiley

Subject

Genetics,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3