The cellular redox state in Bacillus amyloliquefaciens WH1 affects biofilm formation indirectly in a surfactant direct manner

Author:

Sun Huiwan1ORCID,Si Fengmei1,Zhao Xiuyun1,Li Feng1,Qi Gaofu1

Affiliation:

1. College of Life Science and Technology Huazhong Agricultural University Wuhan China

Abstract

AbstractSurfactin is a signal to trigger biofilm formation against harsh environments. Generally, harsh environments can result in change of the cellular redox state to induce biofilm formation, but we know little about whether the cellular redox state influences biofilm formation via surfactin. Here, the reductant glucose could reduce surfactin and enhance biofilm formation by a surfactin‐indirect way. The oxidant H2O2 led to a decrease of surfactin accompanying with weakened biofilm formation. Spx and PerR were both necessary for surfactin production and biofilm formation. H2O2 improved surfactin production but inhibited biofilm formation by a surfactin‐indirect manner in Δspx, while it reduced surfactin production without obvious influence on biofilm formation in ΔperR. The ability against H2O2 stress was enhanced in Δspx, but weakened in ΔperR. Thereby, PerR was favorable for resisting oxidative stress, while Spx played a negative role in this action. Knockout and compensation of rex also supported that the cells could form biofilm by a surfactin‐indirect way. Collectively, surfactin is not a unique signal to trigger biofilm formation, and the cellular redox state can influence biofilm formation by a surfactin‐direct or ‐indirect way in Bacillus amyloliquefaciens WH1.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3