Transcriptional regulation of the yersiniabactin receptor fyuA gene by the ferric uptake regulator in Klebsiella pneumoniae NTUH‐K2044

Author:

Yu Qian1ORCID,Li Hailin1,Du Ling2,Shen Lifei3ORCID,Zhang Jiaxue3,Yuan Lingyue4,Yao Huang1,Xiao Hong1,Bai Qunhua1,Jia Yan1,Qiu Jingfu1,Li Yingli1

Affiliation:

1. School of Public Health Chongqing Medical University Chongqing China

2. Chengdu Center for Disease Control and Prevention Chengdu Sichuan China

3. Jiangbei District Center for Disease Control and Prevention Jiangbei Chongqing China

4. Shanghai Center for Disease Control and Prevention Shanghai China

Abstract

AbstractThe ferric uptake regulator (Fur) is a global regulator that influences the expression of virulence genes in Klebsiella pneumoniae. Bioinformatics analysis suggests Fur may involve in iron acquisition via the identified regulatory box upstream of the yersiniabactin receptor gene fyuA. To observe the impact of the gene fyuA on the virulence of K. pneumoniae, the gene fyuA knockout strain and complementation strain were constructed and then conducted a series of phenotypic experiments including chrome azurol S (CAS) detection, crystal violet staining, and wax moth virulence experiment. To examine the regulatory relationship between Fur and the gene fyuA, green fluorescent protein (GFP) reporter gene fusion assay, real‐time quantitative reverse transcription polymerase chain reaction (RT‐qPCR), gel migration assay (EMSA), and DNase I footprinting assay were used to clarify the regulatory mechanism of Fur on fyuA. CAS detection revealed that the gene fyuA could affect the generation of iron carriers in K. pneumoniae. Crystal violet staining experiment showed that fyuA could positively influence biofilm formation. Wax moth virulence experiment indicated that the deletion of the fyuA could weaken bacterial virulence. GFP reporter gene fusion experiment and RT‐qPCR analysis revealed that Fur negatively regulated the expression of fyuA in iron‐sufficient environment. EMSA experiment demonstrated that Fur could directly bind to the promoter region of fyuA, and DNase I footprinting assay further identified the specific binding site sequences. The study showed that Fur negatively regulated the transcriptional expression of fyuA by binding to upstream of the gene promoter region, and then affected the virulence of K. pneumoniae.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3