Optimization of chromatographic buffer conditions for the simultaneous analysis of phosphatidylinositol and phosphatidylinositol phosphate species in canola

Author:

Gertner David S1ORCID,Bishop David P2,Padula Matthew P1

Affiliation:

1. School of Life Sciences and Proteomics Core Facility Faculty of Science University of Technology Sydney Ultimo Australia

2. Hyphenated Mass Spectrometry Laboratory School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo Australia

Abstract

The phosphatidylinositols and phosphatidylinositol phosphates are a set of closely related lipids known to influence various cellular functions. Irregular distributions of these molecules have been correlated with the development and progression of multiple diseases, including Alzheimer's, bipolar disorder, and various cancers. As a result, there is continued interest regarding the speciation of these compounds, with specific consideration on how their distribution may differ between healthy and diseased tissue. The comprehensive analysis of these compounds is challenging due to their varied and unique chemical characteristics, and current generalized lipidomics methods have proven unsuitable for phosphatidylinositol analysis and remain incapable of phosphatidylinositol phosphate analysis. Here we improved upon current methods by enabling the sensitive and simultaneous analysis of phosphatidylinositol and phosphatidylinositol phosphate species, whilst enhancing their characterization through chromatographic resolution between isomeric species. A 1 mM ammonium bicarbonate and ammonia buffer was determined optimal for this goal, enabling the identification of 148 phosphatidylinositide species, including 23 lyso‐phosphatidylinositols, 51 phosphatidylinositols, 59 oxidized‐phosphatidylinositols, and 15 phosphatidylinositol phosphates. As a result of this analysis, four distinct canola cultivars were differentiated based exclusively on their unique phosphatidylinositide‐lipidome, indicating analyses of this type may be of use when considering the development and progression of the disease through lipidomic profiles.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3