Affiliation:
1. Swedish Medical Products Agency Uppsala Sweden
Abstract
This paper presents an approach based on triple injection capillary zone electrophoresis for identification of monoclonal antibodies. The analyte to be identified is injected between two zones of a known reference. The distances between the reference zones (plug I and III) and the target zone (plug II) are adjusted by partial electrophoresis of the first and second injection plugs. The full migration time of the target analyte is calculated from the observed migration time by considering the migration times of the reference in the first and third injection plugs. The relative migration time, that is, the ratio between the full migration time of the analyte and the migration time of the reference in the third injection plug provides the basis for identification. Here, eight monoclonal antibodies, including a pair of biosimilars, were used interchangeably as both analyte and reference to investigate potential of the method. The relative migration time for a preliminary positive identification were found to vary between 0.994 and 1.006 (1.000 ± 0.006, p = 95%). Beside the relative migration time, isoform distribution, peak profiles, and early migrating peaks, originating from components in the pharmaceutical formulations, were successfully used to verify the identity of all tested monoclonal antibodies.