Affiliation:
1. School of Pharmacy Jining Medical University Jining P. R. China
2. School of Pharmacy Weifang Medical University Weifang P. R. China
3. Qingdao Center of Resource Chemistry & New Materials Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Qingdao P. R. China
4. College of Food Science and Engineering Shandong Agriculture and Engineering University Jinan P. R. China
Abstract
In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high‐performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed‐phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X‐ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed‐phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1‐phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed‐phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.
Funder
Natural Science Foundation of Shandong Province
Subject
Filtration and Separation,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献