A deep learning‐based simulator for comprehensive two‐dimensional GC applications

Author:

Minho Lucas Almir Cavalcante1,Cardeal Zenilda de Lourdes1,Menezes Helvécio Costa1ORCID

Affiliation:

1. Departamento de Química ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos Belo Horizonte Minas Gerais Brazil

Abstract

Among the main approaches for predicting the spatial positions of eluates in comprehensive two‐dimensional gas chromatography, the still under‐explored computational models based on deep learning algorithms emerge as robust and reliable options due to their high adaptability to the structure and complexity of the data. In this work, an open‐source program based on deep neural networks was developed to optimize chromatographic methods and simulate operating conditions outside the laboratory. The deep neural networks models were fit to convenient experimental predictors, resulting in scaled losses (mean squared error) equivalent to 0.006 (relative average deviation = 8.56%, R2 = 0.9202) and 0.014 (relative average deviation = 1.67%, R2 = 0.8009) in the prediction of the first‐ and second‐dimension retention times, respectively. Good compliance was observed for the main chemical classes, such as environmental contaminants: volatile, semivolatile organic compounds, and pesticides; biochemistry molecules: amino acids and lipids; pharmaceutical industry and personal care products and residues: drugs and metabolites; among others. On the other hand, there is a need for continuous database updates to predict retention times of less common compounds accurately. Thus, forming a collaborative database is proposed, gathering voluntary findings from other users.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3