Comparing π‐complexation capabilities of ionic liquids containing silver(I) and copper(I) ions by headspace single drop microextraction in combination with high‐performance liquid chromatography

Author:

Eor Philip12,Byington Miles1,Anderson Jared L.12ORCID

Affiliation:

1. Ames National Laboratory—USDOE Ames Iowa USA

2. Department of Chemistry Iowa State University Ames Iowa USA

Abstract

Selective π‐complexation capabilities of silver(I) and copper(I) ions can be effectively facilitated in ionic liquids. To understand the effects of environmental factors that influence the π‐complexation of these metal ions with analytes, techniques that employ small volumes of ionic liquid that can be readily analyzed are desired. In this study, headspace single drop microextraction coupled with HPLC is used to investigate a diverse set of environmental factors on the metal ion‐mediated complexation with aromatic compounds in ionic liquid media. Silver(I) and copper(I) bis[(trifluoromethyl)sulfonyl]imide salts were both studied by dissolving them in the 1‐decyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquid and employing the mixture as extraction media for aromatic compounds. Water and acetonitrile within the sample solution were observed to interfere with the complexation of silver(I) ions and aromatic compounds, while ethylene glycol and triethylene glycol did not. The temperature and extraction times were optimized to fully facilitate the π‐complexation capabilities of metal ions in ionic liquid media. Partition coefficients between the sample headspace and metal ion were determined using a three‐phase equilibria model. Although no discernable difference in analyte partitioning between the headspace and ionic liquid solvent was observed, analyte partition coefficients to silver(I) ion tended to be greater compared to copper(I) ion.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3