Fabrication of highly crystalline covalent organic framework for solid‐phase extraction of three dyes from food and water samples

Author:

Wang Junji1,Tao Yongqing1,Wang Dandan1,Wang Luchun1,Tian Meng1,Yang Yulian1,Liu Qiuyi1,Zou Yuemeng1,Zhou Quan1,Ke Famin1,Gao Die1ORCID

Affiliation:

1. School of Pharmacy Southwest Medical University Luzhou P. R. China

Abstract

Herein, a covalent organic framework, which was fabricated at room temperature by using 1,3,5‐tris(p‐formylphenyl) benzene and 1,3,5‐tris(4‐aminophenyl)benzene as building blocks, was employed as an adsorbent for solid‐phase extraction of dyes including congo red, methyl blue and direct red 80 for the first time. The prepared covalent organic framework was properly characterized by different techniques and the results revealed that it had a uniform spherical structure, high crystallinity, satisfactory surface area, and good thermal stability. Moreover, the adsorption performance of the material was explored by using static and dynamic adsorption experiments and the results indicated that the material showed good adsorption capacities for three dyes with adsorption capacities in the range of 55.25–284.10 mg/g and the adsorption equilibrium can be achieved in 15 min. Further, to achieve the best adsorption effects of the material, the influence parameters such as pH, ionic strength, type of desorption solvent, and the material dosage in the solid‐phase extraction column, were optimized in turn. Finally, under optimal conditions, the solid‐phase extraction coupled with HPLC was applied to the analysis of dyes in food and water samples. The recoveries of dyes in actual samples were satisfactory, revealing the unique applicability of the material in the sample pretreatment field.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3