Low velocity impact resistance of hybrid CFRP‐elastomer‐metal laminates: Influence of stacking sequence and impact conditions on damage mechanisms

Author:

Li Zhongyu123ORCID,Jackstadt Alexander34,Zhang Junyuan5,Liebig Wilfried V.4,Kärger Luise3

Affiliation:

1. School of Automotive Engineering, Vehicle Engineering Harbin Institute of Technology Weihai China

2. State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Hunan University Changsha China

3. Institute of Vehicle System Technology, Lightweight Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

4. Institute for Applied Materials—Material Science and Engineering, Hybrid and Lightweight Materials Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

5. State Key Laboratory of Automobile Simulation and Control, Autobody Engineering Jilin University Changchun China

Abstract

AbstractFiber‐metal laminates (FMLs) are generally regarded as excellent lightweight materials for advanced structure design. To enhance the mechanical properties, the common FMLs can be optimized using carbon fibers. However, the combination of carbon fibers with aluminum induces interfacial challenges. Preventing galvanic corrosion with elastomeric interlayers is an effective solution. The lay‐up configuration greatly effects the impact damage resistance of hybrid CFRP‐elastomer‐metal laminates (HyCEMLs). In this work, micro‐CT scans and optical micrographic inspections on HyCEMLs are conducted after impact tests to ascertain the microstructural origins behind the mechanical performance changes. In addition, finite element models of different HyCEML configurations are built to complement the limited experimental data. The damage mechanisms of HyCEML with different configurations under various impact conditions are further compared. The numerical results suggest that impact energy is a more informative measure in terms of damage mode and size than impact velocity and momentum. Results also indicate that when the thickness for each sub‐laminate of HyCEML is maintained the same, hybrid laminates with aluminum stacked outside is beneficial for delaying the occurrence of matrix cracking and delaminations, and enhances HyCEML's resistance to global deformation. These findings will contribute to engineering hybrid laminates with desired impact performance for lightweight load‐bearing structures.Highlights The hybrid laminate with elastomeric interlayers is a forward‐looking solution in impact applications. Impact energy is a more informative measure in terms of assessing the damage mode and extent in HyCEMLs. The influence of stacking sequence on damage mechanisms of HyCEMLs is evaluated. Microstructural origins behind variations of hybrid laminates in the impact resistance are revealed.

Funder

Harbin Institute of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3