Improved effects of Helicoverpa armigera nucleopolyhedrovirus integrated with Campoletis chlorideae against H. armigera and impact of the virus on the parasitoid

Author:

Dou Tao123ORCID,Bai Sufen12,Gao Futao123,Tian Liangheng12,Zhu Junhua123,Gu Xiaohang12,Yang Xifa123,Hao Youwu123,An Shiheng12,Liu Xiangyang123ORCID,Yin Xinming12

Affiliation:

1. College of Plant Protection Henan Agricultural University Zhengzhou China

2. Henan Engineering Laboratory of Pest Biological Control Zhengzhou China

3. NanoAgro Center, College of Plant Protection Henan Agricultural University Zhengzhou China

Abstract

AbstractBACKGROUNDCombined use can be an effective measure to improve pest control by viruses and parasitic wasps. However, not all combinations of natural enemies show improved effects. Helicoverpa armigera nucleopolyhedrovirus (HearNPV) and Campoletis chlorideae Uchida are two important natural enemies of Helicoverpa armigera. This study aimed to investigate the combined effects of C. chlorideae and HearNPV against H. armigera larvae and the impact of HearNPV on C. chlorideae.RESULTSThe combination of HearNPV and C. chlorideae exerted increased mortality on H. armigera when C. chlorideae parasitized larvae one day after infection with HearNPV. C. chlorideae could distinguish between HearNPV‐infected and noninfected larvae. Besides influencing host selection of C. chlorideae, HearNPV infection had negative effects on the development and reproduction of C. chlorideae. The developmental time of C. chlorideae was significantly prolonged and the percentage of emergence and adult eclosion of C. chlorideae was lower in infected hosts. The adult wasps were also smaller in body size, and female adults had fewer eggs when they developed in virus‐infected hosts.CONCLUSIONSHearNPV combined with C. chlorideae could improve the efficacy of biological control against H. armigera. The results provided valuable information on the importance of timing in the combined use of HearNPV and C. chlorideae for the biological control of H. armigera. © 2023 Society of Chemical Industry.

Funder

Earmarked Fund for China Agriculture Research System

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3