Modeling and experimental study on a photochemical microscale continuous oscillatory baffled reactor

Author:

Liu Peiwen1,Zhu Weiping1,Zhao Fang2ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy East China University of Science and Technology Shanghai China

2. State Key Laboratory of Chemical Engineering, School of Chemical Engineering East China University of Science and Technology Shanghai China

Abstract

AbstractHerein, the first photochemical microscale continuous oscillatory baffled reactor, that is, Photo‐μCOBR, was designed and evaluated. Computational fluid dynamics simulations were used to optimize the key structural parameter and operating conditions. Then, the mixing process was simulated and the μCOBR was shown to be more than 23 times faster than the straight channel both under oscillating conditions. Finally, a glass Photo‐μCOBR was fabricated by femtosecond laser internal engraving technology, and the photocatalytic gas–liquid oxidation of dihydroartemisinic acid was performed. A yield of 65.9% was achieved in a residence time of ~120 s and at a gas–liquid flow rate ratio of 1:3 (vs. 18.6% in the capillary photomicroreactor under identical conditions). The results in this work offer guidelines for the design and operation of microscale COBRs, and the as‐fabricated Photo‐μCOBR displays good potential for gas–liquid photochemical reactions.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3