Affiliation:
1. Instituto de Matemática Pura e Aplicada Rio de Janeiro Brazil
2. Institute of Discrete Mathematics Graz University of Technology Graz Austria
3. Instituto de Matemática Universidade Federal Fluminense Niterói Brazil
Abstract
AbstractThe set‐coloring Ramsey number is defined to be the minimum such that if each edge of the complete graph is assigned a set of colors from , then one of the colors contains a monochromatic clique of size . The case is the usual ‐color Ramsey number, and the case was studied by Erdős, Hajnal and Rado in 1965, and by Erdős and Szemerédi in 1972. The first significant results for general were obtained only recently, by Conlon, Fox, He, Mubayi, Suk and Verstraëte, who showed that if is bounded away from 0 and 1. In the range , however, their upper and lower bounds diverge significantly. In this note we introduce a new (random) coloring, and use it to determine up to polylogarithmic factors in the exponent for essentially all , , and .
Funder
Austrian Science Fund
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Subject
Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献