Testing androgen‐induced immunosuppression: Environmental androgens as a model system for steroid‐immune interaction

Author:

López‐Pérez Jorge E.1ORCID,Goessling Jeffrey M.2ORCID,Murray Christopher M.1

Affiliation:

1. Department of Biological Sciences Southeastern Louisiana University Hammond Louisiana USA

2. Natural Sciences Collegium Eckerd College St. Petersburg Florida USA

Abstract

AbstractIt is well known that hormones influence and direct most facets of physiology; however, there is still contention regarding the directions of certain relationships, for example, between gonadal hormones and immunity. Among the many proposed relationships relating to gonadal–immune interactions, support for immunosuppressive effects of androgens remains prominent within physiological literature. Although ample study has been directed toward the immunosuppressive effects of androgens, considerable disagreement remains regarding their influence on immune function. In this study, we test the hypothesis that androgens inhibit immunocompetence in the American alligator (Alligator mississippiensis). Developing alligators were incubated at female‐producing temperatures with a subset of individuals being exposed to 17‐α‐methyltestosterone (MT) before sexual determination. 17‐α‐methyltestosterone is a potent androgen, not aromatizable by crocodilians, that has been found to exert masculinizing effects in exposed crocodilian populations in vivo and in vitro. Additionally, a subset of animals was exposed to a novel antigen to quantify innate and acquired immune function. We recovered no significant differences in leukocyte ratios or proportions between groups and found no significant differences in innate immune function as measured by hemolysis‐hemagglutination. However, we did find significant differences in acquired immune function, where masculinized individuals expressed greater antibody titers. Our findings reject the hypothesis that androgens suppress immune function; rather, androgens may be immunoenhancing to acquired humoral responses and neutral to innate humoral immunity in crocodilians.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3