Experimental study on characteristics of liquid dynamics in a cylindrical water tank under harmonic excitation

Author:

Zhao Mi1,Jia Shaocong1,Qu Yang1,Du Xiuli1,Wang Piguang1ORCID

Affiliation:

1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education Beijing University of Technology Beijing China

Abstract

AbstractAs the offshore engineering industry continued to develop, issues such as damage to storage structures due to liquid shaking became increasingly prevalent. This paper explored the dynamic response of liquid within a rigid cylindrical water tank subjected to harmonic excitation through vibration table tests, analyses, and numerical simulations. Using the Laplace equation and the Bessel function of the first kind, the analytical formula of liquid dynamic response was derived. A numerical model was established by ANSYS software to verify the accuracy of the analytical solution. At the same time, the response characteristics of hydrodynamic pressure and liquid level wave height were studied by vibration table tests. In this experiment, a rigid cylindrical water tank with varying depths of liquid was subjected to harmonic excitations utilizing a vibration table. In most cases, the experimental results agreed well with the analytical formula. However, under conditions of relatively severe liquid sloshing, there was a discrepancy in peak values between the experiment and the analytical formula. The experimental data indicated that both the hydrodynamic pressure and liquid level wave height increase with an increase in harmonic excitation frequency and amplitude.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3