Characterization and stability assessment of Ocimum gratissimum leaves extract loaded nanostructured lipid carrier

Author:

Nasir Najaa Fadhilah Mohd1,Hasham Rosnani1ORCID,Sabtu Rahimah1,Ali Fathilah2ORCID,Adrus Nadia1ORCID,Jamaluddin Jamarosliza1ORCID,Rahman Roshanida Abdul1,Hamid Mariani Abdul1,Yaakob Harisun1

Affiliation:

1. Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Skudai Malaysia

2. Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering International Islamic University Malaysia (IIUM) Kuala Lumpur Malaysia

Abstract

AbstractIn the last few decades, several nanoparticles technologies of actives delivery systems have emerged in the formulation of personal care products. The purpose of this study is to formulate the nanostructured lipid carrier loaded with Ocimum gratissimum leaves extract (OGNLC) and to characterize the chemical and physical properties of the OGNLC formulation. Ultrasound‐Assisted Extraction (UAE) method are used in this study to obtain O. gratissimum extract with the determination of the TPC, while melt emulsification homogenization conjoined with ultrasonic homogenization method are used to prepare OGNLC samples. Two types of surfactants (Tween 80 and soy lecithin) are incorporated in the formulation to form OGNLC with various compositions (%) to determine the best formulation. The effect of varying compositions of surfactants in OGNLC samples on the mean particle size (MPS), polydispersity index (PDI), zeta potential (ZP) and encapsulation efficiency (EE%) of OGNLC are characterized. The best formulation also was analyzed by FTIR spectroscopy, and the encapsulation efficiency are determined. The stability of OGNLC particle size was also assessed after 30 days of exposure under low and room temperature (4°C, 25°C). An optimal OGNLC consists of 2.0% O. gratissimum extract, 2.0% GMS, 10.0% VCO, and varying surfactant compositions of 2.0% of Tween 80, and 1.0% of soy lecithin by a mean particle size of 155.73 ± 1.53 nm, a PDI value of 0.203 ± 0.007, zeta potential of |−37.2| ± 0.95 mV, and encapsulation efficiency (%) of 95.70% ± 6.256%. The stability assessment of OGNLC showed that the obtained formulation is at least stable for more than 30 days. This study concludes that the composition of surfactants are important factors affecting the size and stability of the OGNLC. This is the first study to report on the synthesis of nanostructured lipid carrier loaded with O. gratissimum.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3