Degradation of synthetic azo dyes by Citrobacter freundii isolated from tannery effluent

Author:

Manikandan K 1,Lavanya S 1,Ranjani S 1,Begum Faridha1,Hemalatha S 1ORCID

Affiliation:

1. School of Life Sciences B S Abdur Rahaman Crescent Institute of Science and Technology Vandalur, Chennai Tamil Nadu India

Abstract

AbstractScarcity of water is becoming a big issue. Most of the water is used in industrial sectors including pharmaceutical, food, textiles, leather, and cosmetics. Industrial effluent water is unable to treat and reuse due to their intricate nature. Effluent water contains synthetic azo dyes since they employ synthetic azo dyes as a major coloring agent. Existing approaches are ineffective in treating effluent containing synthetic azo dyes. Synthetic azo dyes containing effluent water can be treated biologically to overcome the drawbacks of physical and chemical processes. In this research work, novel organism was isolated from tannery effluent water. Isolated organisms were screened and selected for effective degradation of azo dyes. One such organism is Citrobacter freundii which effectively degrade the effluent water containing synthetic azo dyes and allowing it to reuse for variety of purpose. Phytotoxicity study of the treated water was carried out and the study confirms non toxicity nature of the treated water. In‐silico screening was carried out to test the interaction efficacy of enzymes such as Laccase, Azo reductase, and peroxidase which are responsible for effective dye degradation with synthetic azo dyes. In silico studies showed better interactions between synthetic azo dyes and enzymes. This is the novel report on showing the effective degradation of synthetic azo yellow dye by using C. freundii isolated from tannery effluent.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3