Use of biokaolinite clay for the microbial removal of phenol from real industrial wastewater samples by Dermacoccus nishinomiyaensis and Kocuria rosea

Author:

Hassouna Mohamed El‐Kassem M.1ORCID,Abdel‐Tawab Marzooka Shaban2,Abdel‐Aleem Adel Ahmed Mohamed13

Affiliation:

1. Chemistry Department, Faculty of Science Beni‐Suef University Beni‐Suef Egypt

2. Laboratories and quality sector Beni‐Suef Company for drinking water and sanitation Beni‐Suef Egypt

3. Central Water Laboratory Beni‐Suef Company for drinking water and sanitation Beni‐Suef Egypt

Abstract

AbstractPhenol bioremediation was investigated using two bacteria (primarily cocci) Dermacoccus nishinomiyaensis, Kocuria rosea strains and the one actinomycetes Nocardiopsis lucentensis which were isolated from samples of activated sludge from the wastewater treatment plant (WWTP) in Beni‐Suef, Egypt as sole carbon and energy sources. This was applied on real industrial wastewater sample taken from Ul HAWA textile plant, Middle Egypt. Degradation of phenol by microbes adsorbed on natural kaolin clay was studied compared with free microbes. In case of 50 mg/L as starting phenol concentration, the percentage removal using free microbes was 68%, corresponding to 98% in case of microbes adsorbed on kaolin clay after the passage of 48 h under incubation at 30°C and neutral pH at 150 rpm. Also, 300 mg/L of phenol achieved degradation frequency of 80% compared to 38% after ≈48 h without clay addition. High concentrations of an organic pollutant are usually inhibitory for the microorganisms. Kaolin clay has a pronounced effect in accelerating phenol degradation through biofilm formation resulting in decreasing the degradation time, increasing the percentage of removing efficiency under high phenol concentration conditions due to its buffering effects on pH fluctuations of the degradation system. Kaolin clay protects microorganisms against unfavorable environment, resists the adverse effects of substrate inhibition and accelerates the degradation process. The adsorption process was demonstrated by the pseudo‐first‐order, pseudo‐second‐order, Weber–Morris adsorption kinetic models, and four isotherm models namely, Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich have been applied to express the adsorption process. The SEM images of microbes adsorbed on kaolin clay explain their adsorption mode on the clay surface as biofilm (Bio kaolinite).

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3