Organic farming in the improvement of soil health and productivity of tea cultivation: A pilot study

Author:

Maitra Debapriya1ORCID,Roy Bedaprana1,Das Debdatta1,Chakraborti Archisman2,Das Anirban1,Chaudhuri Indranath2,Choudhury Sudeshna Shyam1,Mitra Arup Kumar1

Affiliation:

1. Department of Microbiology St. Xavier's College, (Autonomous) Kolkata India

2. Department of Physics St. Xavier's College, (Autonomous) Kolkata India

Abstract

AbstractThe sub‐mountainous tea gardens of the Dooars region of West Bengal, which contribute approximately 25% of the national tea yield, are constantly fighting with diminishing soil fertility. Inorganic alternatives like chemical fertilizers can provide easier yet short‐term solutions, as their prolonged and indiscriminate usage leaches the soil, devouring its productivity, increasing the soil's heavy metal contents, and subsequently accumulating those heavy metals in leaves. A plausible substitution in this scenario could be the use of organic alternatives like composting or biofertilizer. Although references to such alternative means are found in the literature, a holistic approach targeting plant growth promotion along with mitigating soil metal toxicity is lacking. Keeping this background in mind, this pilot study was designed to optimize the dosage of novel biofertilizers (using resident and alien flora) that can reduce heavy metal loads and residual toxicity in soil, thereby improving overall soil health and tea production. Two potential metallophilic plant growth‐promoting strains of Bacillus sp. (previously reported) were selected and applied to potted tea plants of two different varieties of tea: TV9 and TV25. Among the two modes of treatment tested: solid treatment (compost amended with bacterial culture) and liquid treatment (cell pellets mixed in water suspension), the water suspension‐based direct application of resident soil bacteria showed the highest physiological growth with reduced metal toxicity. Based on physiological data and physico‐chemical data collected, it was observed that direct application of bacteria showed better results in both plant and soil health improvement in comparison to regular compost amended with beneficial microflora. Therefore, this small‐scale pilot study aimed to optimize the dosage and mode of application of novel biofertilizers for improved soil and plant health.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3