Affiliation:
1. Department of Industrial and Environmental Biotechnology National Institute of Genetic Engineering and Biotechnology (NIGEB) Tehran Iran
2. Department of Microbiology, Faculty of Life Sciences Azad Islamic University, North Tehran Branch Tehran Iran
Abstract
AbstractColorectal cancer (CRC) is a widespread type of cancer across the world. One efficient therapy approach is the use of antibiotic agents, but one of the main issues related to treating CRC is microbial resistance to antibiotics. As microbes are becoming more resistant to antibiotics and other traditional antimicrobial agents, nanobiotechnology has made it possible to employ nanomaterials with the aim of creating a new generation of antimicrobial agents. In the present study, we have assessed the antimicrobial potential of CuO nanoparticles (NPs) against gram‐negative bacteria like Klebsiella pneumoniae carrying PKS genes responsible for encoding colibactin as the key factor for CRC development. For this purpose, the antibacterial effects of conventional antibacterial agents, including erythromycin, piperacillin, and ampicillin, as well as CuONPs, were compared on isolated strains from cancerous candidates. The obtained results revealed that isolates (K. pneumoniae) showed resistance toward the mentioned conventional antibiotics, but CuONPs showed efficient antibacterial properties against K. pneumonia with a MIC = 62 μg/mL. On the other hand, a synergistic antibacterial effect was obtained when CuONPs were used in combination with conventional antibiotics, which are ineffective when used alone.Therefore, CuONPs can be introduced as an excellent antimicrobial agent against K. pneumoniae bacteria in CRC, especially when they are combined with other antibiotics since they can activate the antimicrobial activity of the conventional antibiotics.
Subject
Process Chemistry and Technology,Drug Discovery,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,General Medicine,Bioengineering,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献