Design, synthesize, physicochemical characterization, nonlinear optical properties structural elucidation, biomedical studies, and DNA interaction of some new mixed ligand complexes incorporating 4,6‐dimethylpyrimidine derivative and imidazole ligand

Author:

Abu‐Dief Ahmed M.12ORCID,El‐Khatib Rafat M.1ORCID,El‐Dabea Tarek13ORCID,Abdel‐Latif Samir A.4,Barnawi Ibrahim Omar5ORCID,Aljohani Faizah S.2ORCID,Al‐Ghamdi Khalaf2ORCID,El‐Remaily Mahmoud Abd El Aleem Ali Ali1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science Sohag University Sohag Egypt

2. Chemistry Department, College of Science Taibah University Madinah Saudi Arabia

3. Chemistry Department, Faculty of Science King Salman International University Ras Sudr Egypt

4. Department of Chemistry, Faculty of Science Helwan University Cairo Egypt

5. Department of Biological Sciences, Faculty of Science Taibah University Al‐Madinah Al‐Munawwarah Saudi Arabia

Abstract

This study was planned to prepare new mixed ligand chelates derived from N‐(4,6‐dimethylpyrimidin‐2‐yl)‐3a,4,5,6,7,7a‐hexahydro‐1H‐benzimidazol‐2‐amine (BIP), and imidazole (I). They identified through CHN study, spectroscopic (NMR, FT‐IR, and UV–Vis), conductivity, magnetic susceptibility, mass analysis, and thermal analysis. Correlation between all results exposed that the BIP ligand performed as a bi‐dentate ligand through NN donation locations, where the co‐ligand shows as N–H monodentate. The optimization for the studied chelates led to the formation of distorted octahedral geometry for BIPICu and BIPIVO chelates, distorted (tetrahedral and square planar) geometry for BIPIAg and BIPIPd chelates, respectively, around the metal salt. The B3LYP level, B3LYP/6‐311G** level for the free ligand, and B3LYP/6–311G**‐LANL2DZ functional level for the solid chelates were used in density functional theory (DFT) calculations. The findings showed that DFT calculations produce conclusions that are consistent with those of the experiments. The resulting compounds' nonlinear optical properties were examined by calculating the hyperpolarizability (β) and molecular polarizability (α) parameters, which gave rise to several unexpected optical properties for the synthesized compounds. Using the agar well diffusion method, the antimicrobial activity of the produced compounds was experimentally confirmed against a subset of G+ and G− bacteria. To ascertain how these substances attach to the targeted protein binding sites, a molecular docking mechanism between the microbially resistant chelates and their suppressed microbial protein pocket receptors was investigated. Also, DNA binding estimated for studied structures was tested by electronic absorption spectrum, viscosity estimation, and gel electrophoresis. Data proposed that all tested compounds link with DNA using an intercalation, electrostatic, and covalent binding mechanism. Moreover, antioxidant performance for studied compounds was governed by radical scavenging techniques in vitro. In addition, an MTT assay has been worked out to explore in vitro cytotoxic impending. All the tested chelates assumed antimicrobial, antitumor, and antioxidant performances that cause them to suggest drugs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3