Prediction of the water level at the Kien Giang River based on regression techniques

Author:

Chieu Ta Quang1ORCID,Thao Nguyen Thi Phuong1,Thi Hue Dao2,Huong Nguyen Thi Thu1

Affiliation:

1. Faculty of Computer Science and Engineering Thuyloi University Dong Da Hanoi Vietnam

2. Faculty of Water Resources Engineering Thuyloi University Dong Da Hanoi Vietnam

Abstract

AbstractModel accuracy and runtime are two key issues for flood warnings in rivers. Traditional hydrodynamic models, which have a rigorous physical mechanism for flood routine, have been widely adopted for water level prediction in river, lake, and urban areas. However, these models require various types of data, in‐depth domain knowledge, experience with modeling, and intensive computational time, which hinders short‐term or real‐time prediction. In this paper, we propose a new framework based on machine learning methods to alleviate the aforementioned limitation. We develop a wide range of machine learning models such as linear regression (LR), support vector regression (SVR), random forest regression (RFR), multilayer perceptron regression (MLPR), and light gradient boosting machine regression (LGBMR) to predict the hourly water level at Le Thuy and Kien Giang stations of the Kien Giang river based on collected data of 2010, 2012, and 2020. Four evaluation metrics, that is, R2, Nash–Sutcliffe efficiency, mean absolute error, and root mean square error, are employed to examine the reliability of the proposed models. The results show that the LR model outperforms the SVR, RFR, MLPR, and LGBMR models.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3