Potential energy surfaces and dynamic properties via ab initio composite and density functional approaches

Author:

Patel Prajay12ORCID,Chung Joseph1,Bowman Max Aksel1ORCID,Ulusoy Inga13ORCID,Wilson Angela K.1ORCID

Affiliation:

1. Department of Chemistry Michigan State University East Lansing Michigan USA

2. Chemistry Department University of Dallas Irving Texas USA

3. Scientific Software Center, Interdisciplinary Center for Scientific Computing Heidelberg University Heidelberg Germany

Abstract

AbstractVibrational spectroscopy enables critical insight into the structural and dynamic properties of molecules. Presently, the majority of theoretical approaches to spectroscopy employ wavefunction‐based ab initio or density functional methods that rely on the harmonic approximation. This approximation breaks down for large molecules with strongly anharmonic bonds or for molecules with large internuclear separations. An alternative to these methods involves generating molecular anharmonic potential energy surfaces (potentials) and using them to extrapolate the vibrational frequencies. This study examines the efficacy of density functional theory (DFT) and the correlation consistent Composite Approach (ccCA) in generating anharmonic frequencies from potentials of small main group molecules. Vibrational self‐consistent field Theory (VSCF) and post‐VSCF methods were used to calculate the fundamental frequencies of these molecules from their potentials. Functional choice, basis set selection, and mode‐coupling are also examined as factors in influencing accuracy. The absolute deviations for the calculated frequencies using potentials at the ccCA level of theory were lower than the potentials at the DFT level. With DFT resulting in bending modes that are better described than those of ccCA, a multilevel DFT:ccCA approach where DFT potentials are used for single vibrational mode potentials and ccCA is used for vibrational mode‐mode couplings can be utilized for larger polyatomic systems. The frequencies obtained with this multilevel approach using VCIPSI‐PT2 were closer to experimental frequencies than the scaled harmonic frequencies, indicating the success of utilizing post‐VSCF methods to generate more accurate representations of computed infrared spectra.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3