A subspace‐adaptive weights cubature method with application to the local hyperreduction of parameterized finite element models

Author:

Bravo J. R.12ORCID,Hernández J. A.23ORCID,Ares de Parga S.12ORCID,Rossi R.12ORCID

Affiliation:

1. Department of Civil and Environmental Engineering (DECA) Universitat Politècnica de Catalunya Barcelona Spain

2. Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE) Barcelona Spain

3. E.S. d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa (ESEIAAT), Universitat Politècnica de Catalunya Terrassa Spain

Abstract

AbstractThis article is concerned with quadrature/cubature rules able to deal with multiple subspaces of functions, in such a way that the integration points are common for all the subspaces, yet the (nonnegative) weights are tailored to each specific subspace. These subspace‐adaptive weights cubature rules can be used to accelerate computational mechanics applications requiring efficiently evaluating spatial integrals whose integrand function dynamically switches between multiple pre‐computed subspaces. One of such applications is local hyperreduced‐order modeling (HROM), in which the solution manifold is approximately represented as a collection of basis matrices, each basis matrix corresponding to a different region in parameter space. The proposed optimization framework is discrete in terms of the location of the integration points, in the sense that such points are selected among the Gauss points of a given finite element mesh, and the target subspaces of functions are represented by orthogonal basis matrices constructed from the values of the functions at such Gauss points, using the singular value decomposition (SVD). This discrete framework allows us to treat also problems in which the integrals are approximated as a weighted sum of the contribution of each finite element, as in the energy‐conserving sampling and weighting method of C. Farhat and co‐workers. Two distinct solution strategies are examined. The first one is a greedy strategy based on an enhanced version of the empirical cubature method (ECM) developed by the authors elsewhere (we call it the subspace‐adaptive weights ECM, SAW‐ECM for short), while the second method is based on a convexification of the cubature problem so that it can be addressed by linear programming algorithms. We show in a toy problem involving integration of polynomial functions that the SAW‐ECM clearly outperforms the other method both in terms of computational cost and optimality. On the other hand, we illustrate the performance of the SAW‐ECM in the construction of a local HROMs in a highly nonlinear equilibrium problem (large strains regime). We demonstrate that, provided that the subspace‐transition errors are negligible, the error associated to hyperreduction using adaptive weights can be controlled by the truncation tolerances of the SVDs used for determining the basis matrices. We also show that the number of integration points decreases notably as the number of subspaces increases, and that, in the limiting case of using as many subspaces as snapshots, the SAW‐ECM delivers rules with a number of integration points only dependent on the intrinsic dimensionality of the solution manifold and the degree of overlapping required to avoid subspace‐transition errors. The Python source codes of the proposed SAW‐ECM are openly accessible in the public repository https://github.com/Rbravo555/localECM.

Funder

Ministerio de Ciencia, Innovación y Universidades

European High Performance Computing Joint Undertaking

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3