Affiliation:
1. Department of Mechanical Engineering Weber State University Ogden Utah USA
2. Department of Systems Engineering Colorado State University Fort Collins Colorado USA
Abstract
AbstractAn ongoing challenge within the field of Systems Engineering is the application of a right‐scoped and consistent approach to modeling human functions and risks within a system lifecycle. Humans interacting with a system can be modeled along a continuum from passive agents with not well‐defined interfaces with the system operations, to essential personnel who are responsible for dynamic interactions that ensure the safety and correct function of the system. This paper seeks to contribute to the integration of a model of human function, response, and reliability into the systems engineering of a complicated system through translation of a Human Factors Hazard Model (HFHM) into the Systems Modeling Language (SysML). The HFHM is constructed as a sequential event tree model of human response to triggering events, where each event's likelihood of failure is modeled by a set of fault trees predicting human failure probabilistically using Human Error Probabilities (HEP). Implementation of this model in SysML is demonstrated through a set of stereotyped structural, behavioral, and parametric diagrams. Integration of the HFHM within SysML demonstrates the benefits of human factors modeling and integration into Model‐Based Systems Engineering (MBSE) processes illustrating executability, reusability, and traceability.
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献