Estimating total species richness: Fitting rarefaction by asymptotic approximation

Author:

Zou Yi1ORCID,Zhao Peng1ORCID,Axmacher Jan Christoph2ORCID

Affiliation:

1. Department of Health and Environmental Sciences Xi'an Jiaotong‐Liverpool University Suzhou China

2. UCL Department of Geography University College London London UK

Abstract

AbstractEstimating the number of species in a community is important for assessments of biodiversity. Previous species richness estimators are mainly based on nonparametric approaches. Although parametric asymptotic models have been applied, they received limited attention due to specific limitations. Here, we introduce parametric models fitting the probability‐based rarefied species richness curve that allow us to estimate the “Total Expected Species” (TES) in a community based on species' abundance data. We develop two approaches to calculate TES (termed “TESa” and “TESb”), based on two slightly different mathematical assumptions regarding Expected Species (ES) models. We provide R functions to calculate both these estimation approaches and their standard deviation. The function also enables users to visualize the estimation. We test the performance of TESa, TESb, and their average (TESab) across simulated and empirical data, and compare their bias, precision, and accuracy with other commonly used, nonparametric species richness estimators: the bias‐corrected (bc‐)Chao1 and the abundance‐based coverage estimator (ACE). Simulation reveals that in small samples TESa shows a tendency to overestimate and TESb to underestimate overall species richness. TESab performs well in bias, precision, and accuracy when compared with (bc‐)Chao1 and ACE estimators. Results from empirical data show that the variance generated from TES estimates is comparable with that for (bc‐)Chao1 and ACE. Our study demonstrates that rarefaction theory in combination with parametric approximation models provides a valuable new approach to estimate the species richness of incompletely sampled communities. Robust estimates are likely to be obtained where the observed number of species is greater than half of the TES estimation. When the ratio of TESa to the observed richness is ≫2, we suggest the use of TESb or TESab. Although more comprehensive comparisons with other estimators are suggested, we encourage researchers to consider the TES approach in their biodiversity studies as a complement to current existing estimators.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3