Application of response surface methodology to optimize the emissions and performance of a dual fuel engine using diesel and dimethyl ether

Author:

Kumar Nishant1ORCID,Yadav Vinod Singh1

Affiliation:

1. Department of Mechanical Engineering National Institute of Technology, Uttarakhand Srinagar India

Abstract

AbstractIn this study, the combustion and exhaust emission characteristics of a single‐cylinder, water‐cooled, four‐stroke VCR engine at a fixed CR were evaluated using DME and diesel with timed manifold injections of 2, 3, 4, and 5 ms for DME and conventional diesel settings. The investigational trials showed that DME has the capability to reduce NOx and OP while used in an optimized range and to have clean combustion characteristics. Induction of DME under low to medium load conditions resulted in a reduction in NOx, OP, and BTE with an increase in HC, whereas at higher load settings, NOx increased with an increase in diesel energy share. The dual fuel combustion was characterized by a short ignition delay, an early start of combustion, and increased in‐cylinder pressure due to the increased compression work input during the cycle. The absence of carbon–carbon bonds in DME molecules caused low soot emissions during dual fuel combustion. After experimentation, RSM was applied to the results for parametric optimization and found to be a useful tool for reducing the error as well as minimizing the number of trials. The optimum settings were achieved at 2 kW load and 4 ms duration, where the desirability function reached a value of 0.94189. The regression equations developed by the model were validated by 9 random experiments, and the error is found to be acceptable. The engine should be operated at medium load to control NOx, and the DME energy share should be low and near 50%.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3