Spatial and temporal motion characterization for x‐ray CT

Author:

Hsieh Jiang1

Affiliation:

1. Independent Consultant Brookfield Wisconsin USA

Abstract

AbstractBackgroundMotion induced image artifacts have been the focus of many investigations for x‐ray computed tomography (CT). Methodologies of combating patient motion include the use of gating devices to optimize the data acquisition, reduction in patient scan time via faster gantry rotation and large detector coverage, and the development of advanced reconstruction and post‐processing algorithms to minimize motion artifacts.PurposePreviously proposed approaches are generally “global” in nature in that motion is characterized for the entire image. It is well known, however, that the presence of motion artifact in a CT image is highly nonuniform. When there is a lack of automated and quantitative local measure indicating the presence and the severity of motion artifacts in a local region, the quality of the reconstructed images depends heavily on the CT operator's rigor and experience. Even when an operator is informed of the presence of motion, little information is provided about the nature of the motion artifact to understand its relevance to the clinical task at hand. In this paper, we propose an image‐space spatial‐ and temporal‐consistency metric (CM) to detect and characterize the local motion.MethodIn a non‐rigid human organ, such as the lung, there are many small and rigid objects (target objects), such as blood vessels and nodules, distributed throughout the organ. If motion can be characterized for these target objects, we obtain a complete motion map for the organ. To accomplish this, a preliminary image reconstruction is carried out to identify the target objects and establish region‐of‐interests for consistency‐metric calculation. The CM is then obtained based on the backprojected intensity difference between the object region and its circular background. For a stationary object, the accumulation of this quantity over views is linear. When a target object moves, nonlinear behavior exhibits and a quantitative measure of linearity indicates the severity of motion.ResultsExtensive computer simulation was utilized to confirm the validity of the theory. These tests stress the sensitivity of the proposed CM to the target object size, object shape, in‐plane motion, cross‐plane motion, cone‐beam effect, and complex background. Results confirm that the proposed approach is robust under different testing conditions. The proposed CM is further validated using a cardiac scan of a swine, and the proposed CM correlates well with the visual inspection of the artifact in the reconstructed images.ConclusionsIn this paper, we have demonstrated the efficacy of the proposed CM for motion detection. Unlike previously proposed approaches where the consistency condition is derived for the entire image or the entire imaging volume, the proposed metric is well localized so that different zones in a patient anatomy can be individually characterized. In addition, the proposed CM provides a quantitative measure on a view‐by‐view basis so that the severity of motion is consistently estimated over time. Such information can be used to optimize the image reconstruction process and minimize the motion artifact.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3