TWIST Family of Basic Helix-Loop-Helix Transcription Factors Mediate Human Mesenchymal Stem Cell Growth and Commitment

Author:

Isenmann Sandra1,Arthur Agnieszka1,Zannettino Andrew CW2,Turner Jenna L.1,Shi Songtao3,Glackin Carlotta A.4,Gronthos Stan1

Affiliation:

1. Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/ CSCR, University of Adelaide, SA, Australia

2. Myeloma and Mesenchymal Research Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/CSCR, University of Adelaide, Adelaide, SA, Australia

3. Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA

4. Division of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA

Abstract

Abstract The TWIST family of basic helix-loop-helix transcription factors, Twist-1 and Dermo-1 are known mediators of mesodermal tissue development and contribute to correct patterning of the skeleton. In this study, we demonstrate that freshly purified human bone marrow-derived mesenchymal stromal/stem cells (MSC) express high levels of Twist-1 and Dermo-1 which are downregulated following ex vivo expansion. Enforced expression of Twist-1 or Dermo-1 in human MSC cultures increased expression of the MSC marker, STRO-1, and the early osteogenic transcription factors, Runx2 and Msx2. Conversely, overexpression of Twist-1 and Dermo-1 was associated with a decrease in the gene expression of osteoblast-associated markers, bone morphogenic protein-2, bone sialoprotein, osteopontin, alkaline phosphatase and osteocalcin. High expressing Twist-1 or Dermo-1 MSC lines exhibited an enhanced proliferative potential of approximately 2.5-fold compared with control MSC populations that were associated with elevated levels of Id-1 and Id-2 gene expression. Functional studies demonstrated that high expressing Twist-1 and Dermo-1 MSC displayed a decreased capacity for osteo/chondrogenic differentiation and an enhanced capacity to undergo adipogenesis. These findings implicate the TWIST gene family members as potential mediators of MSC self-renewal and lineage commitment in postnatal skeletal tissues by exerting their effects on genes involved in the early stages of bone development.

Funder

National Health and Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3