SCARS: Suturing wounds due to conflicts between non‐functional requirements in autonomous and robotic systems

Author:

Roy Mandira12ORCID,Bag Raunak2,Deb Novarun3,Cortesi Agostino2ORCID,Chaki Rituparna4,Chaki Nabendu1

Affiliation:

1. Dept. of Computer Science and Engineering University of Calcutta Kolkata India

2. Dept. of Environmental Sciences, Informatics and Statistics Ca' Foscari University Venice Italy

3. Dept. of Computer Science and Engineering Indian Institute of Information Technology Vadodara (IIIT‐V) India

4. A.K.C School of Information Technology University of Calcutta Kolkata India

Abstract

AbstractIn autonomous and robotic systems, the functional requirements (FRs) and non‐functional requirements (NFRs) are gathered from multiple stakeholders. The different stakeholder requirements are associated with different components of the robotic system and with the contexts in which the system may operate. This aggregation of requirements from different sources (multiple stakeholders) often results in inconsistent or conflicting sets of requirements. Conflicts among NFRs for robotic systems heavily depend on features of actual execution contexts. It is essential to analyze the inconsistencies and conflicts among the requirements in the early planning phase to design the robotic systems in a systematic manner. In this work, we design and experimentally evaluate a framework, called SCARS, providing: (a) a domain‐specific language extending the ROS2 Domain Specific Language (DSL) concepts by considering the different environmental contexts in which the system has to operate, (b) support to analyze their impact on NFRs, and (c) the computation of the optimal degree of NFR satisfaction that can be achieved within different system configurations. The effectiveness of SCARS has been validated on the iRobot Create3 robot using Gazebo simulation.

Publisher

Wiley

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3