eZ flow metrics: Using z‐scores to estimate deviations from natural flow in the Colorado River below Glen Canyon Dam

Author:

Palmquist Emily C.1ORCID,Deemer Bridget R.1ORCID,Metcalfe Anya N.1ORCID,Kennedy Theodore A.1ORCID,Bair Lucas S.1ORCID,Fairley Helen C.1ORCID,Grams Paul E.1ORCID,Sankey Joel B.1ORCID,Yackulic Charles B.1ORCID

Affiliation:

1. U.S. Geological Survey, Southwest Biological Science Center Grand Canyon Monitoring and Research Center Flagstaff Arizona USA

Abstract

AbstractRiver flow patterns are primary drivers of lotic ecosystems, and hundreds of metrics have been developed to quantify flow attributes. Although existing metrics have been a powerful tool in designing environmental flows, they are often developed with specific resources in mind and are rarely directly comparable with each other (i.e., units are often different). Here, we focus on natural flows as the resource of interest and develop z‐score metrics that measure the naturalness of regulated flows, incorporating natural means and interannual variation. These “eZ metrics” summarize whole year, subdaily, and functional flow patterns as standard deviations from natural such that their values are directly comparable. We illustrate their utility with a case study from the Colorado River downstream of Glen Canyon Dam in Arizona, USA. We calculated metrics for 1964–2022, spanning >5 decades of changing water policy, hydropower generation, and flow experimentation. We evaluate four options for estimating natural baseline flows. Across metrics, we found that subdaily stage variation deviated the most from baseline. Flows to satisfy regional water policy and power demands altered metrics more than designer flows (which target specific resource outcomes), and years with low water releases were closest to natural. Most of the designer flows have not made flow patterns more natural, due to incorrect seasonal timing, small magnitude, or short duration. By explicitly considering interannual variability and quantifying how regulated flows differ from natural using standard deviations, these metrics can inform management when the goal is to restore a natural flow regime.

Funder

Bureau of Reclamation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3