Study on the hydraulic classification characteristics of micron‐sized silica particles

Author:

Zhang Yaheng1ORCID,Tang Zhiyong23ORCID

Affiliation:

1. Key Laboratory of Micro‐Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering Xuchang University Xuchang P.R. China

2. CAS Key Laboratory of Low‐Carbon Conversion Science and Engineering Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai P.R. China

3. School of Chemistry and Material Science University of Science and Technology of China Hefei P.R. China

Abstract

AbstractThe present study investigates the motion characteristics of micron‐sized silica particles and how solid–water interaction regulates hydraulic classification. Two methods were evaluated for classifying micron‐sized silica particles. Using the small‐diameter cyclone for hydraulic classification of micron‐sized silica particles resulted in poor separation due to the short residence time of particles in the cyclone. Particle settling in still water showed that settling velocity, drag force, and virtual mass force increased with particle size, providing a basis for size classification. In the particle sedimentation process, drag force and gravity were dominant, with drag force reaching equilibrium with gravity in a fast time. The upward water flow was introduced to classify silica particles, with its superficial velocity between the settling terminal velocities of large and small particles, allowing large and small particles to flow to the overflow and underflow, respectively. The upward flow velocity was higher near the center of the flow field and lower near the wall, leading to a parabolic distribution pattern of the particle group along the radial position. In hydraulic sedimentation classification experiments of silica particles, the average particle size of the overflow sample was lower than that of the feed, and its size range was narrower, indicating the feasibility of hindered sedimentation by upward flow for classifying micron‐sized silica particles.

Funder

Shanghai Advanced Research Institute, Chinese Academy of Sciences

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3