Hybrid behaviors of CO2 absorption into blended DEEA‐based solution for the improvement of capture performance

Author:

Wu Dawei1,Yin Yihan2,Fan Yongchun1,Lin Haizhou1,Gao Hongxia2,Liang Zhiwu2ORCID

Affiliation:

1. China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd Guangzhou China

2. Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost‐effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering Hunan University Changsha China

Abstract

AbstractBACKGROUNDAt present, the chemical absorption method of CO2 capture is considered to be an effective means to reduce carbon emissions. The development of blended amine systems with excellent CO2 capture performance is the focus of research.RESULTThe hybrid behaviors of N,N‐diethylethanolamine (DEEA) with addition of monoethanolamine (MEA), 2‐(methylamino)ethanol(MAE) and 2‐((2‐aminoethyl)amino)‐ethanol(AEEA) as absorbents were investigated and developed to reduce the energy consumption for solvent regeneration in the CO2 capture process. The equilibrium solubility of CO2 for blended DEEA/MEA, DEEA/MAE and DEEA/AEEA with a series of molar ratios (0.0:2.0, 0.5:1.5, 1.0:1.0, 1.5:0.5 and 2.0:0.0) was examined. The experimental results showed that the values of CO2 equilibrium solubility of amine blends exhibited a compromise behavior between each individual amine solution. Additionally, the effects of molar ratios on the relative CO2 absorption rate, regeneration rate and CO2 cyclic capacity for the tested amine blends were studied using an improved rapid absorbent screening method.CONCLUSIONThe experimental data showed that the blended DEEA/MAE solution exhibits much higher CO2 cyclic capacity than that of DEEA/AEEA under the nitrogen atomic conservation. However, the mixing DEEA and AEEA could obviously reduce the CO2 equilibrium solubility and CO2 cyclic capacity compared with that of individual AEEA solution, indicating the DEEA had an inhibiting effect on AEEA. Furthermore, the mass transfer performances of DEEA, DEEA/MAE and DEEA/AEEA were tested in order to validate the accuracy of the improved rapid absorbent screening method. © 2024 Society of Chemical Industry (SCI).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3