Bio‐Inspired Polydiacetylene Vesicles for Controlling Stimulus Sensitivity

Author:

Nakayama Shota1,Suga Keishi1ORCID,Kamata Tatsuya1,Watanabe Kanako1ORCID,Namigata Hikaru1,Welling Tom A. J.12ORCID,Nagao Daisuke1ORCID

Affiliation:

1. Department of Chemical Engineering Tohoku University 6‐6, Aoba, Aramaki‐aza, Aoba‐ku Sendai 980–8579 Japan

2. Frontier Research Institute for Interdisciplinary Sciences Tohoku University 6‐3, Aoba, Aramaki‐aza, Aoba‐ku Sendai 980–8579 Japan

Abstract

AbstractPolydiacetylene (PDA) is a kind of photopolymerizable polymer, which exhibits a unique color transition in response to external stimuli such as heat, pH, and solvent. PDAs are attractive as eye‐detection stimulus sensors with excellent time performance; however, the sensitivity of PDAs should be improved. Considering the biological membrane‐like structure of diacetylene (DA) vesicles, their modification by incorporating membrane lipids (e.g., diacylphosphocholine, PC) can be used to control the membrane fluidity, and consequently molecular ordering of DAs in the vesicle. Inspired by biological membrane systems, lipid vesicles are employed as platforms to generate PDA, and essential factors that influence the sensitivity of PDA are investigated. By lowering the polymerization temperature, the generation of PDA becomes slower, while the sensitivity improves. By adding PCs at the molar ratio of lipid:DA = 1:1, the sensitivity of PDA can be varied: the PCs with lower phase transition temperatures (Tm) made PDA insensitive, while the PCs with higher Tm improved the sensitivity as compared to pure poly(PCDA). It is concluded that the photopolymerization of DAs with a lower membrane fluidity induces highly sensitive PDA, while the photopolymerization of DAs with a higher membrane fluidity induces insensitive PDA with robustness toward stimuli.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3