Ascorbate Promotes Epigenetic Activation of CD30 in Human Embryonic Stem Cells

Author:

Chung Tung-Liang123,Turner Jennifer P.1,Thaker Nilay Y.1,Kolle Gabriel4,Cooper-White Justin J.1,Grimmond Sean M.4,Pera Martin F.5,Wolvetang Ernst J.1

Affiliation:

1. Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia

2. Australian Stem Cell Centre, Melbourne, Victoria, Australia

3. Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia

4. Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia

5. Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA

Abstract

Abstract Human embryonic stem cells (hESCs) and induced pluripotent stem cells have the ability to adapt to various culture conditions. Phenotypic and epigenetic changes brought about by the culture conditions can, however, have significant impacts on their use in research and in clinical applications. Here, we show that diploid hESCs start to express CD30, a biomarker for malignant cells in Hodgkin's disease and embryonal carcinoma cells, when cultured in knockout serum replacement (KOSR)-based medium, but not in fetal calf serum containing medium. We identify the commonly used medium additive, ascorbate, as the sole medium component in KOSR responsible for CD30 induction. Our data show that this epigenetic activation of CD30 expression in hESCs by ascorbate occurs through a dramatic loss of DNA methylation of a CpG island in the CD30 promoter. Analysis of the phenotype and transcriptome of hESCs that overexpress the CD30 signaling domain reveals that CD30 signaling leads to inhibition of apoptosis, enhanced single-cell growth, and transcriptome changes that are associated with cell signaling, lipid metabolism, and tissue development. Collectively, our data show that hESC culture media that contain ascorbate trigger CD30 expression through an epigenetic mechanism and that this provides a survival advantage and transcriptome changes that may help adapt hESCs to in vitro culture conditions.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3