Technical note: Errors introduced when using Dose Voxel Kernels for estimating absorbed dose from radiopharmaceutical therapies involving alpha emitters

Author:

Tranel Jonathan1,Palm Stig2,Feng Felix Y.34,St. James Sara5,Hope Thomas A.14

Affiliation:

1. Department of Radiology and Biomedical Imaging University of California San Francisco San Francisco California USA

2. Department of Medical Radiation Sciences Institute of Clinical Sciences Sahlgrenska Academy, University of Gothenburg Gothenburg Sweden

3. Department of Radiation Oncology University of California San Francisco San Francisco California USA

4. UCSF Helen Diller Family Comprehensive Cancer Center University of California San Francisco San Francisco California USA

5. Department of Radiation Oncology University of Utah Salt Lake City Utah USA

Abstract

AbstractBackgroundIn radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non‐stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous.PurposeThis work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta‐ and alpha‐emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated.MethodsTo illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177Lu) and alphas (211At, 225Ac, and 227Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps.ResultsFor beta‐emitter (177Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach.ConclusionsOur results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs. The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3