Affiliation:
1. Department of Biomedical Engineering Washington University School of Medicine St Louis Missouri USA
2. Department of Anesthesiology and Critical Care Medicine Johns Hopkins University School of Medicine Baltimore Maryland USA
3. Department of Orthopaedic Surgery Washington University School of Medicine St Louis Missouri USA
4. Department of Cell Biology & Physiology Washington University School of Medicine St Louis Missouri USA
5. Shriners Hospital for Children St Louis Missouri USA
Abstract
AbstractMicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR‐181 family and provides information from the published literature on the role of miR‐181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR‐181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR‐181 family members on differentiation toward a number of cell lineages in various non‐neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR‐181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA‐approved drugs that modulate miR‐181 expression. We conclude by discussing some common mechanisms by which miR‐181 homologs appear to regulate a number of different cellular processes and how targeting specific miR‐181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Subject
Cell Biology,Clinical Biochemistry,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献