Stable isotope profiling of farmed Penaeus monodon for the evaluation of feed efficiency

Author:

Simtoe Ambakisye P.12ORCID,Lugendo Blandina R.2,Mgaya Yunus D.2

Affiliation:

1. Ministry of Livestock and Fisheries Directorate of Policy and Planning Mtumba Dodoma Tanzania

2. School of Aquatic Sciences and Fisheries Technology University of Dar es Salaam, Kunduchi Campus Dar es Salaam Tanzania

Abstract

AbstractThe current study profiled the dual isotopes of carbon and nitrogen in feeds and muscles of farmed Penaeus monodon for evaluation of feed efficiency in making up the prawn muscle. Signatures of both feed and resulted muscles of P. monodon were subjected to two‐ and three‐source linear mixing models to elucidate the contribution of each feed item in the building of the muscle. The results revealed that carbon and nitrogen in different feed substances have different influences on the growth and nutrient uptake by the prawn. Different growth stages showed isotopic switching within prawn muscles in the course of their building up. Generally, marine sources were the most enriched in both δ13C and δ15N. Likewise, δ13C of wild‐caught prawns (−16.30 ± 0.72‰) were superior over farmed prawns (−18.00 ± 0.59‰) (p < 0.01), whereas no significant differences were observed in δ15N values between wild (8.03 ± 0.65‰) and farmed (8.38 ± 1.39‰) (p > 0.01). The isotopic composition of P. monodon mirrored those of the ingredients contained in its feed and varied across treatment levels. Comparing to other ingredients, marine macroalgae exhibited significantly higher (p < 0.01) feed efficiency, and as a result, they improved the growth of P. monodon compared to the other ingredients. The same treatment recorded significantly lower (p < 0.01) feed conversion ratio compared to other treatments. However, muscle somatic index, specific growth rate and condition factor were not significantly different across treatments (p > 0.01). Moreover, a clear distinction was observed between wild and farmed P. monodon, and such a distinction is clearly explained by δ13C composition. In conclusion, multiple sources of δ13C and δ15N in feeds are incorporated more efficiently in muscles than single sources.

Publisher

Wiley

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3