Thermal performance analysis of oriented MHD convective flow and entropy production of hybrid nanofluids in a cavity induced by semicircles at different radii ratios

Author:

Souayeh Basma12ORCID

Affiliation:

1. Department of Physics College of Science King Faisal University Al‐Ahsa Saudi Arabia

2. Faculty of Sciences of Tunis Physics Department Laboratory of Fluid Mechanics University of Tunis El Manar Tunis Tunisia

Abstract

AbstractThe current study numerically treats the magnetic field impacts on the natural convection flow and entropy generation in a square cavity filled with hybrid nanofluid and induced by two isothermally heated semicircles at the bottom and left walls of the cavity. The cavity is filled by hybrid nanofluid (titanium oxide/silver‐water) and oriented under different inclination angles with the applied magnetic field. The simulations in this study were executed via a home‐made code written in the FORTRAN programing language. The numerical methodology considered to solve the coupled equations of continuity, momentum, energy, and entropy generation equations with the associated boundary conditions is the finite volume method and the full multigrid acceleration. Various wake parameters are considered in this research study, namely, the inclination angle of the cavity (α), the magnetic field inclination (γ), the Hartmann number (Ha), the Rayleigh number (Ra), the volume fraction of the hybrid nanofluid (ϕ) and the internal semicircles radii ratio (β). The major findings issued from the impact of these parameters on the fluid flow and heat transfer characteristics reveal that heat transfer and entropy generation are a decreasing function of the Hartmann parameter. Moreover, the total entropy generation is intensified by 85.23% from Ra = 103 to Ra = 106 for Ha = 10, by 85.818% for Ha = 50 and 83.813% for Ha = 100. Besides, the flow magnitude is found decreasing with increasing the radii ratio β of the semicircles. It is also found that optimal heat transfer rates deducted from the variation of average Nusselt number versus Ra for different volume fractions of the hybrid nanoparticles are obtained for the extreme values of the pertinent parameters (β = 1, ϕ = 8%, Ra = 106). Hence, the present work offers a useful tool and a parametric study for the research community and engineers on the design and optimization of thermal management systems used in a variety of industrial applications, such as heat exchangers, nuclear reactors, and energy systems.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3